Abstract

Currently Block J6 is in the later stage of steam flooding after 27 years’ steam injection, its recovery factor is about 50%, and the water cut is more than 95%. Particularly, the present steam oil ratio is about 12 m3(CWE)/t which has reached the economic limit and is in ineffective development. Cores from four post steam flooding drilling wells show that only top 2-3m of the total 25-30m pay zone has a steam chamber which is the main steam channel and its residual oil saturation is about 20%, the other 22-27m pay zone is displaced by hot water and its oil saturation is 40-55%. A 3D physical simulation show the conventional steam flooding with full interval perforation quickly broke through from the top of reservoir, and the steam oil ratio rose rapidly from 5 m3(CWE)/t to 10 m3(CWE)/t. The recovery factor was only 20.1% at the time of steam breakthrough, and then it was in the phase of high steam oil ratio for a long time. During CO2 assisted steam flooding the whole perforated producer is switched into a low half perforated well, and the recovery factor increases from 20.1% to 81.1%, the steam oil ratio is 3.3m3(CWE)/t. There are three characteristics in CO2 assisted steam flooding stage, firstly there is a steam and CO2 assisted gravity drainage mode, steam chamber expands from the top 2-3cm to the total 20cm oil layer. Secondly, there is a stable emulsion foam oil, its water cut is 60-70%, CO2 liquid ratio is about 5:1 Sm3/t, CO2 is a kind of dispersed bubble so it is much more than the dissolved CO2 liquid ratio 2:1 Sm3/t. Thirdly, CO2 lows the heatloss to overburden and keeps the formation pressure. The calculation shows that the heat loss can be reduced by more than 10% in the top layer. A pilot test including 9 well patterns(49 wells) has been established, and its recovery factor will be up to 75%, and the steam oil ratio will up to 2 m3(CWE)/t, a good production performance is predicted optimistically.

You can access this article if you purchase or spend a download.