Abstract

Work is devoted to construction 3D Geomechanics model for Achimov Formation for one of the West Siberia oilfield. The model is performed for monitoring and control field throughout the cycle of its life – start from drilling process (recommendation for optimization well trajectory and well design to exclude drilling risks) and during oilfield development (monitoring the development process to take account of changes in the stress state of the oilfield, its influence on the hydraulic fracture growth and hydrocarbon production processes). Oilfield, which are currently introduced in the development, characterize by increasingly complex geology and, consequently, require more sophisticated technological solutions for both the construction of wells and the development process, which involves the need to build complex 3D geological and geomechanical models.

As a result of the work was calculated current stress state on the field, taking into account the effects of faults. Special attention was paid to the process of mapping of faults and low-amplitude tectonic dislocation. For this purpose used inversion stress model, including simulation of deformations and displacements arising under the action of tectonic driver. This model allows to select the tectonic dislocation, the scale of which is significantly smaller than the resolution of seismic.

Based on the results of the verification of geomechanical model and sensitivity analysis to the source data, formulated the basic methodological approaches for building and testing models of geomechanical properties was done. During the work was made a forecast borehole stability for horizontal wells, create a map of faults, found the relationship between the faults parameters and their impact on the stress changes in the area of interest, assessed the impact of changes in reservoir pressure during field development on the stress orientation, predicted direction of hydraulic fracture and formed recommendations on hydraulic fracturing design taking into account possible variations in the stress state of the sector of modeling.

You can access this article if you purchase or spend a download.