The Yamal region of Western Siberia holds enormous reserves of gas and condensate across many geologic layers including the Achimov deposits of the Late Jurassic and Early Cretaceous. The Achimov however, is among the most challenging layers in the Yamal area with deep bedding, very low permeability, thin laminations and abnormally high reservoir pressures that all greatly complicate the appraisal and production of hydrocarbons. In this regard, accurate formation evaluation is essential to ensure efficient and economically reasonable methods of production. Modern methods of openhole logging, including NMR, acoustic and wireline formation testers (WFT) provide advanced information about the formation and can aid in the most efficient development.

In this article we present the results of advanced methods of openhole logging that provides greater understanding of the characteristics of the Achimov reservoir. Special NMR measurements were used to estimate the residual fluid saturation which was confirmed with WFT tools designed for downhole fluid analysis and sampling. We also show how to overcome the negative impact of supercharging on measurements of formation pressure in the Achimov formations and the necessity of carrying out such measurements to validate the hydrodynamic reservoir model. To understand the validity of the samples acquired downhole a simulation was carried out further showing the range of possible variations of the basic PVT properties of hydrocarbons during the sampling.

The results of advanced acoustic logging allows to estimate the anisotropy of the mechanical properties of the Achimov layers. The use of the data allowed us to model the fractures resulting from hydraulic stimulation and showed significant differences in the geometric characteristics of the fracture between wells and explains why the lower section of the Achimov are often depleted with respect to the upper sections.

You can access this article if you purchase or spend a download.