Borate-crosslinked fluids have increased in usage for fracturing treatments in recent years because of their low cost and low damage potential to formations. Until recently, most applications have been in shallow wells below 200°F because of high friction pressures and relatively low thermal stability. Recent advances in borate fluid chemistry have resulted in new techniques to minimize pumping pressure through the use of chemically delayed borate crosslinking agent.

Ability to minimize friction pressure with delayed borate crosslinker has reduced treatment cost and extended the application of borate-crosslinked fluids in deeper wells with higher bottomhole temperature (to 300°F). Laboratory and field data have been gathered to investigate the effects of fluid parameters on the friction behavior of the delayed borate-crosslinked fluid.

The laboratory experiments were performed with a recirculation flow loop to simulate field conditions. The field test was performed in a vertical wellbore. Measurements were made with three bottomhole memory gauges installed at various depths.

This paper presents friction pressure correlations derived from laboratory and field data for calculating realtime bottomhole treating pressure on-site to enhance the fracturing treatment analysis. Case histories are used to demonstrate the accuracy in friction pressure prediction for delayed borate-crosslinked fluids using the correlations presented in this paper. A method is also presented for field application of the friction pressure correlations provided in this paper.

You can access this article if you purchase or spend a download.