Multi-rock type cores can be characterized by complex higher order connectivity relationships within an agglomerated petrophysical system. A solution that relates multiphase flow simulation in cores to time-lapse seismic properties in order to examine closed-loop 4D integration is performed at a high level on a plug. While a 4D workflow is not explicitly examined in this work, the requisite petro-elastic modeling (PEM) method based on a simulation-driven interpretation of the Gassmann equation is described and a comparison is made with its empirically derived counterpart. This work illustrates that a simulation-driven petro-elastic modeling approach can be used to generate time-dependent saturated rock properties consistent with seismic attribute description at the plug and core scales. The results demonstrate the simulation-driven approach, of a petro-elastic model embedded in a reservoir simulator, as an alternative to relating pressure and saturation from reservoir simulator-to-seismic-derived properties using a priori empirically based correlations. The method discussed in this paper maintains appreciable continuity with the results of empirically based petro-elastic methods but demonstrates differences commensurate with principal fluid differentiation capability inherent to reservoir simulator-derived data and observed time-lapse seismic response. The significance of applied multi-porosity relationships is further realized upon examination of the time-dependent petro-elastic model results.

You can access this article if you purchase or spend a download.