With the current trend for application of Enhanced Oil Recovery (EOR) technologies, there has been much research into the possible upsets to production, from the nature of the produced fluids to changes in the scaling regime. One key question that is yet to be addressed is the influence of EOR chemicals, such as hydrolysed polyacrylamide (HPAM), on scale inhibitor (SI) squeeze lifetime. Squeeze lifetime is defined by the adsorption of the inhibitor onto the reservoir rock, hence any chemical that interacts with the adsorption process will have an impact on the squeeze lifetime. This paper experimentally demonstrates potential changes to inhibitor adsorption from a polymer EOR project by demonstrating the complex interactions between HPAM and phosphonate scale inhibitors with respect to adsorption.

This work presents a detailed coreflooding programme, supplemented with bottle tests, to identify the impact of HPAM on a diethylenetriamine penta(methylene phosphonic acid) (DETPMP) squeeze lifetime. A range of pH values, representing the expected inhibitor injection pH, have been studied on consolidated and crushed Bentheimer sandstone. A temperature of 70°C is used throughout as it represents the likely maximum temperature at which HPAM would be applied and the typical temperature at which DETPMP would be used in squeeze applications.

The results presented show that scale inhibitor application pH is key in defining the impact of HPAM on DETPMP adsorption. Neutral pH displays a reduced squeeze lifetime, believed to be due to reduction of adsorption sites by HPAM. However, this impact could be countered by injecting this type of scale inhibitor at a low pH (e.g. pH 2). Static tests performed alongside the corefloods show that even low inhibitor concentrations (as found in SI pre-flushes) are sufficiently acidic to fully precipitate the HPAM from solution, but did not impact the adsorption.

This study suggests, contrary to the commonly held view in the industry that EOR polymers may negatively impact squeeze lifetime, that with the correct selection of inhibitor type and their application pH it is possible to achieve the same results as in a conventional reservoir.

You can access this article if you purchase or spend a download.