In order to assess scaling risk in pipes, a better understanding of scale deposition kinetics on steel surface under realistic and complex oil field condition is needed. In this paper, we introduce the development of a novel CaCO3 pre-coated steel tubing for studies of CaCO3 crystal growth kinetics and inhibition kinetics at oilfield conditions. This approach provides a relatively stable surface area and eliminates the limits of laboratory batch experiments. Initially, the heterogeneous precipitation rate of CaCO3 from a supersaturated solution (Calcite SI=0.3–0.7) was evaluated at specific temperatures (60–80°C), linear velocities (0.01–0.75 cm/sec), and ionic strengths (0.1–1M). The curve fitted heterogeneous precipitation rate constant, kppt, ranged from 10−5 to10−4 cm/sec. The results are comparable to that calculated from the Sieder and Tate equation, which indicates that the crystal growth was dominated by mass transfer rate. With the injection of scale inhibitors for one hour through the pre-coated tubing, the calcium carbonate precipitation can be prevented for days, and the crystal growth rate can be significantly slowed down. Not only does this study contribute to the limited data base of scaling kinetics in actual flowing pipes, but also provides a new approach to better understand the inhibitor reaction with the subsurface. The approach and results will assist in the prediction of scaling risk as a function of brine composition, well conditions and scale inhibitor composition, which will improve our ability to predict the severity of scale risk, including the rate of scaling, minimum blockage time, and thus the minimum inhibitory concentration needed in actual flowing pipes.

You can access this article if you purchase or spend a download.