Abstract
The effect of closure stress on fracture conductivity has been well documented by laboratory measurement. Common industry practice for estimating closure stress on proppant in the field is to subtract flowing bottomhole pressure from the estimated in-situ stress of the pay interval fractured. This paper proposes that the closure stress on proppant in a fracture can be significantly higher than common estimations due to the influence of the bounding layers and the elastic response of the formation acting on the proppant. In this paper we will review past literature on fracture propagation, fracture conductivity and proppant placement and demonstrate the impact that increased proppant stress due to bounding layers can have on fracture conductivity and ultimately production.