Optimizing spacing of infill wells and fractures can lead to large rewards for shale field operators, and these considerations have influences on primary and tertiary development of the field. Although several studies have been employed to show the existence of well interference, few models have also implemented Huff-n-Puff and injection containment methods to optimize further hydraulic fracture designs and pressure containment to improve the efficiency of Enhanced Oil Recovery (EOR). This study has performed a rigorous workflow for estimating the impacts of spatial variations in fracture conductivity and complexity on fracture geometries of interwell interference. Furthermore, we applied a non-intrusive embedded discrete fracture model (EDFM) method in conjunction with a commercial compositional reservoir simulator to investigate the impact of well interference through connecting fractures by multi-well history matching to propose profitable opportunities for Huff-n-Puff application. First, based on a robust understanding of fracture properties, updated production data and multi-pad wellbore image logging data from Eagle Ford, the model was constructed to perform nine wells sector model history matching. Later, inter-well connecting fractures were employed for enhanced history matching where results varied significantly from unmeasured fracture sensitivities. The result is the implementation of Huff-n-Puff models that capture inter-well interference seen in the field and their affordable impact sensitivities focused on variable injection rates/locations and multi-point water injection to mimic pressure barriers. The simulation results strengthened the understanding of modeling complex fracture geometries with robust history matching and support the need to incorporate containment strategies. Moreover, the simulation outcomes show that well interference is present and reduces effectiveness of the fracture hits when connecting natural fractures. As a result of the inter-well long fractures, the bottom hole pressure behavior of the parent wells tends to equalize, and the pressure does not recover fast enough. Furthermore, the EDFM application is strongly supported by complex fracture propagation interpretation and ductility to be represented in the reservoir. Through this study, multiple containment scenarios were proposed to contain the pressure in the area of interest.

The model has become a valuable template to inform the impacts on well location and spacing, completion design, initial huff-n-puff decisions, subsequent containment strategies (e.g. to improve cycle timing and efficiency), and to expand to other areas of the field. The simulation results and understandings afforded have been applied to the field satisfactorily to support pressure containment benefits that lead to increased pressure build, reduced gas communication, reduced offset shut-in volumes, and ultimately, improvements in net utilization and capital efficiency.

You can access this article if you purchase or spend a download.