Cement is a key element for successful drilling and completing of a well. From oil and gas wells to geothermal applications, cement is a major material ensuring zonal isolation. With an increase in global energy needs and an expected uptick in drilling and plugging and abandonment activities, evaluating and understanding cement properties is crucial, since these properties are used in various engineering designs and calculations. The objective of this paper is to present how Nuclear Magnetic Resonance (NMR) can be used to understand the cement hydration process and the development of key properties such as strength and porosity. NMR applications for cement include determination of porosity, water interactions, identification of hydration stages and C-S-H gel development with curing time. Since water is present in all cement slurries, NMR can potentially help to understand microstructural changes in cement during curing. Data from more than 600 cement specimens cured for more than a year are compiled. Standard cement properties such as UCS (unconfined compressive strength) are compared with NMR responses. In this paper, we document cement hydration and porosity changes through NMR measurements in samples with five different recipes. Our study also confirms a strong correlation between NMR response and cement strength.

You can access this article if you purchase or spend a download.