Digital core generated from micro CT images of rock sample cutting and results obtained from digital core analysis are presented in this work as a substitute of conventional core study for Petrophysical evaluation. Conventional core extraction during drilling, core preservation and analysis are expensive, time consuming processes and often unavailable for small size fields. Moreover, routine and special core analysis results are a critical input for petrophysical characterization. In this situation, digital core study appears to be a cost effective substitute to ensure and validate petrophysical evaluation results.

High resolution 3D micro CT imaging and analysis was done on rock samples cut during drilling or on sidewall core plugs cut by wireline logging tool. Segmented micro CT image slices when combined in 3D space in three orthogonal directions, can be termed as digital core. Solid rock matrix, clay filled and porous rock portions are distinctly separable using micro CT images and their volume fractions can be estimated. Detail textural analysis in terms of Grain and pore throat size distribution of the rock is possible from digital core which controls storage capacity and flow behavior. Two critical petrophysical input parameters for fluid saturation (Sw) estimation are cementation exponent (m) and saturation exponent (n). These parameters are commonly computed from special core analysis (SCAL) on conventional core plugs. But digital core study can provide the estimates of ‘m’ and ‘n’ which replace the need of SCAL.

Digital core study has been carried out in three different reservoirs in west and east coast of India and the results were analyzed. Porosity and permeability data obtained from digital core was first compared with log analysis results and then used to identify different petro physical rock types (PRT). Fluid saturation (Sw) was estimated from resistivity log by using ‘m’ and ‘n’ exponent obtained from digital core seems to be more realistic and corroborates with well test results. Porosity, permeability, water saturation and rock types (PRT) were helped to build geo-cellular model (GCM) for small and marginal reservoir.

Enhanced reservoir characterization by using digital core study result has helped in better understanding and decision making for small and marginal fields where limited well data is available. Finally this leads to the preparation of field development plan (FDP). Digital core technique is less expensive, having quick turnaround time than conventional coring which has translated into high value business impact for any development project.

You can access this article if you purchase or spend a download.