Abstract
Subsea flow lines in deep water are typically exposed to high pressure and low temperature conditions which can create problems due to formation of gas hydrate. The gas hydrate formed can plug the flow lines causing not only loss of production, but may also create severe safety and environmental hazard. Moreover, dissociation of these plugs may take weeks or even months. Assessment of the hydrate formation potential during both steady is therefore an essential part of field development studies.
The paper presents a case study of a gas field located in KG basin of India which was brought on production in 2018. The objective of the study was to assist the on-site team on issues related to hydrate inhibition during ongoing initial start-up operation and assess the arrival time of rich MEG in the onshore plant in view of turn down flow conditions during commissioning.
The study also demonstrates how the transient simulations helped to monitor progress, identify and respond quickly to address the challenges during initial start-up operation of the deepwater gas field in Indian east coast. It emphasizes the need for accurate estimation of rich MEG arrival time and the minimum required gas flow rate from the subsea wells to ensure timely return of rich MEG to the onshore plant in order to avoid disruption in hydrate inhibition in the subsea system.