Foaming in absorber column for sour gas treatment using amine is a common problem which adversely affects column performance leading to reduction in sales and fuel-gas production and solvent loss. Mostly antifoam injection has been a common method to counter the foaming, large dosage and frequent dosing of antifoam many a times aggravates the problem. This study details an alternative technique based on pressure pulse mechanism to control foaming in one of ONGC's gas sweetening plants.

One of ONGC's amine based sour gas sweetening plants faced severe foaming problem frequently. The feed rate is 200 kscm/hr and absorber column operating pressure is 51 kg/cm2. The experiment utilizes the property of surface tension which fluctuates with change in pressure of the system leading to foam collapse. The experimental procedure involved varying the sour gas feed rate, thereby creating pressure pulse inside the absorber column. Differential pressure across the column which is an indicator of foaming tendency is then monitored and controlled within 1.0 kg/cm2 and recorded for establishing effectiveness of the method.

It is observed that by providing a number of cycles of pressure pulse in the absorber, the differential pressure stabilizes gradually which indicates collapse of foam. It shows that whenever there is increase in feed, expansion of bubble takes place which provides high interfacial liquid-vapour contact. On the other hand whenever there is decrease in feed rate, compression of bubble takes place which provides low interfacial liquid-vapour contact. Surface layer surrounding the bubbles in a foam acts as a membrane or skin that can stretch or relax in response to change in pressure and gives a mechanical shock which breaks the bubble. The increase of size ultimately leads to instability and break-up of the upper surface and releases the liquid holdup. Hence by using feed rate spikes, the pressure of the bubble is pulsed to higher levels and returned to substantially the original level. This cycle continues for a selected number of times so that this pressure pulse travels through the liquid and bubbles and affects its surface tension. This results into a transition phase which in very high energy level breaks the bubble and releases the gas and decreases the liquid hold up and controls the foaming phenomenon.

This paper will gives an insight into a novel methodology of mitigating foaming problem in a sour gas treating absorber just by varying the feed rates in a controlled manner. This technique eliminates the need for injecting antifoam agents which in turn will reduce the operating expenditure of the plant. Adverse impact on environment due to excessive use of antifoam agent is also minimized.

You can access this article if you purchase or spend a download.