Seismic attributes play an important role during reservoir characterization and three-dimensional (3D) lithofacies modeling by providing indirect insight of the subsurface. Using seismic attributes for such studies has always been challenging because it is difficult to determine a realistic relationship between hard data points (i.e., well information) and a 3D volume of seismic attributes. However, a probability-based approach for 3D seismic attribute calibration with well data provides better results of lithofacies modeling and spatial distribution of reservoir properties. This paper presents a probability-based seismic attribute calibration technique that has been described for 3D lithofacies modeling and distribution. This approach helps in subsurface reservoir characterization and provides a realistic lithofacies distribution model. This approach also helps reduce uncertainty of lithofacies prediction compared to conventional methods of simply using geostatistical algorithms.

You can access this article if you purchase or spend a download.