The identification of fluid saturations in depleted reservoir sands is critical to understand the reservoir potential and field life. However, in case of water flooding, the formation water salinity of the reservoirs sands might be altered and fluid saturations from conventional petrophysical analysis can be misleading. This will have direct impact on the field economics. A salinity independent saturation computation from Carbon/Oxygen (C/O) log becomes a necessity in such development wells– a first of such application in a field under secondary recovery for this basin.

C/O well logging has been extensively used in cased hole environments to determine saturation behind casing. They are used essentially to determine oil saturation in cased hole conditions for depleted reservoirs. While their cased hole applications have been well established; for the study well, a pulsed neutron tool was used in an open hole environment to determine the fluid saturations to compare against the saturations computed from conventional resistivity logs. This study helped in the determination of fluid saturations in mixed salinity reservoir sands, which were to be explored from subsequent wells in the field.

The hydrocarbon-bearing sands in the field were water injected in nearby wells to enhance recovery. Development wells drilled in the field relied on petrophysical evaluation from conventional open hole data and pressure testing and fluid sampling depths were determined accordingly. A pulsed neutron tool was deployed in an open hole well after operational constraints were encountered with the formation testing tool. As an alternative, the pulsed neutron data were acquired in the well to compute salinity independent water saturation based on C/O log response as against the fluid saturation computation from resistivity logs. The determination of fluid saturations from C/O helped in determination of altered salinity for the sand intervals in the field. For the study well, C/O-derived water saturation was found to be higher than that from resistivity log computation. This was significant in identification of water breakthrough in the bottom interval of the reservoir sands.

This paper details the method and findings of C/O logging in open hole environment from Western Onland Basin in India. The critical solutions provided for the reservoir sands in the field and enabled the operator to save significant well cost and rig time by making informed decision of not lowering the casing in this well section.

You can access this article if you purchase or spend a download.