Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
NARROW
Format
Subjects
Date
Availability
1-1 of 1
Lindsey Goodman
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Publisher: Society of Petroleum Engineers (SPE)
Paper presented at the SPE International Oilfield Corrosion Conference and Exhibition, May 12–13, 2014
Paper Number: SPE-169633-MS
Abstract
Significant interest exists in the deployment of 13Cr martensitic stainless steels in offshore oil and gas projects. Several grades of 13Cr exist, with the seemingly negligible variations between their chemistries and fabrication processes. The different grades perform dramatically differently, especially regarding cracking resistance in sour or chloride-containing environments. Determination of the proper 13Cr grade for sour service involves the investigation of domain diagrams, and often requires further fitness-for-service testing. However, the validity of each domain diagram for only one chloride concentration or content greatly limits their practicality for selecting 13Cr, thus impeding the ability to determining if fitness-for-service testing should be performed and its potential outcome. Therefore, an empirical model compiled from fitness-for-service data and supported by oilfield experience led to the development of a resource tool designed to provide quick validation of fitness-for-service test results, increasing the efficiency of decision-making for 13Cr selections. Also, this paper summarizes the pros and cons of different 13Cr OCTG alloys, in regards to the mechanical strengths and performances in sour/non-sour conditions, high chloride levels, low pH values and presence of CO 2 . Specifically noted are the H 2 S partial pressures in excess of NACE MR 0175 limits where 13Cr materials can be successfully utilized.