Generally, in water injection systems, oxygen levels starting from around eight ppm are deoxygenated to below 50 ppm, following international standards' guidelines. This work aims to discuss the impact of such a magnitude value of oxygen contamination on steel corrosion in seawater injection systems by analysing theoretical polarisation curves and results from published works with different approaches. Corrosion models consider mass-transfer controlled diffusion of oxygen to predict the maximum steel corrosion rate, which depends on the oxygen limiting current, which in turn is strongly influenced by flow velocity. The effect of free chlorine on corrosion in seawater injection systems has also been considered and included in an oxygen equivalent parameter. In such systems, where oxygen reduction is the key cathodic reaction, the corrosion process may be under cathodic activation control, independent of flow at higher velocities or when erosion-corrosion begins. In this work, theoretical polarisation curves were constructed by using published oxygen and chlorine cathodic limiting currents (iLc) on carbon steel and a noble metal electrode, respectively. Aerated (200 ppb and 9000 ppb of oxygen) and deaerated conditions (50 ppb of oxygen) and the presence of 300 ppb of chlorine were applied to the assumed exchange current densities (io). Neutral (pH 7) and acid (pH 4) conditions (considering the presence of CO2) were also assumed to be at room temperature and pressure. Since the corrosion rate in lower oxygen concentrations (ppb order of magnitude) may result in corrosion rates of the same order of magnitude than in higher oxygen concentrations (ppm order of magnitude) when comparing and analysing results from experimental, semi-empirical or mechanistic approaches, it is necessary to weigh up the effects of both steel surface (bare or scaled/corrosion products) and flow. At oxygen concentrations below 200 ppb and under acid conditions, the contribution of H+ reduction on corrosion rate starts to be higher than oxygen reduction, mainly in the absence of chlorine.

You can access this article if you purchase or spend a download.