Abstract
In this paper, we present a water-cut estimator utilizing the function approximation capability of an artificial neural network (ANN). The inputs to the ANN are optical sensor readings in a Red-Eye water-cut meter, which features the near-infrared (NIR) absorption spectroscopy technology. The initial training of the ANNwas done with a data set acquired from our multi-phase flow-loop test facility, which was filled with live oil, water and gas. The test fluid stream was adjusted with good ranges of water-cut and gas-volume fractions which were supposed to cover the situations that can be foreseen in real production. However, clear discrepancies between the outputs of the ANN and the water-cut values from BS&W measurmentswere observedwhen the ANN was applied to actual production data measured by Red-Eye meters installed at two offshore wells. To address this issue and equip the ANN with self-adapting capability in real application, we propose a Bayesian approach to update the parameters of the ANN based on both initial flow-loop data and collected field data. The performance of the adapted ANN on both the data sets shows the effectiveness of the method.