Colloidal dispersion gels are made up of low concentrations of polymer and aluminum citrate in water. These gels, which are mixed as a homogeneous solution at the surface, provide a valuable tool for in-depth blockage of high permeability regions of rock in heterogeneous reservoirs. Performance of colloidal dispersion gels depends strongly on the type and quality of polymer used. This paper provides an overview of the performance of 18 different polymers in colloidal dispersion gels. 14 of the polymers were partially hydrolyzed polyacrylamides or AMPS polymers in dry crystalline form with varying degrees of hydrolysis and molecular weight. The group also includes one cationic polyacrylamide, one carboxymethyl cellulose, one partially hydrolyzed polyacrylamide in emulsion form and one polysaccharide in dry form. Gels were mixed with the polymers at two polymer concentrations, three polymer:aluminum ratios and in different concentrations of potassium chloride. The gels were quantitatively tested at 1, 7, 14 and 28 days after crosslinking using the transition pressure test, which is a screen flow resistance test. Of the six polymer types tested, only the dry partially hydrolyzed polyacrylamides and AMPS polymers formed colloidal dispersion gels. Gel strength generally increased with increasing anionic charge and molecular weight; however, the manner in which the polymer is manufactured and the impurities present in the polymer also play roles which are more significant than originally expected.

You can access this article if you purchase or spend a download.