Oilfield scale and corrosion at oil and gas wells and topside facilities are well known problems. There are many studies towards the control and mitigation of scaling risk during production. However, there has been limited research conducted to investigate the effectiveness of scale control approaches for the preservation of wells and facility during a potential long term shut-in period, which could last more than 6 months. Due to low oil price and harsh economic environment, the need to shut-in wells and facilities can become necessary for operations. Understanding of scale control for a long term period is important to ensure both subsurface and surface production integrity during the shut-in period. The right strategy and treatment approaches in scale management will reduce reservoir and facility damage as well as the resulting cost for mitigation.

In this paper, we will review and assess the scale risk for different scenarios for operation shut-in periods and utilize laboratory study to improve the understanding of long-term impact and identify appropriate mitigation strategy. Simulated brine compositions from both conventional and unconventional fields are tested. Commercially available scale inhibitors are used for testing. Various conditions including temperature (131-171 °F), saturation index (1.28-1.73), pH (7.04-8.03) and ratio of scaling ions are evaluated. The tested inhibitor dosage range was 0-300 mg/L. Inhibitor-brine incompatibility was also investigated. Sulfate and carbonate scales such as barium sulfate, strontium sulfate and calcium carbonate are studied as example. This paper will provide an important guidance for the management of well shut- in scenarios for the industry, for both conventional and unconventional fields.

Performance of two scale inhibitors for same water composition are demonstrated. The efficiency of scale inhibitor #2 is lower than that of inhibitor #1. A linear correlation is observed for long term scale inhibitor performance in this case. Protection time is thus predicted from data collected from the first 8-week experiments. The predicted protection time at 250 mg/L of inhibitor A and B is 100 weeks and 16 weeks respectively. The actual protection time will be compared to the predicted value. The inhibitor-rock interaction has also been preliminarily studied. The effects of inhibitor adsorption onto formation rock should be considered for chemical treatment design and performance/dosage optimization.

This study provides novel information of scale control in a much longer time frame (up to 6 months). Various parameters may have effects on their long term control. Results will benefit the chemical selection and evaluation for long term well shut-in scenario. In addition, brine-inhibitor compatibility is evaluated simultaneously.

You can access this article if you purchase or spend a download.