Successful liner cementing in unconventional shale wells is strongly dependent on slurry stability. A delayed-release, high-temperature suspending agent was developed that provides viscosification and stabilization of the slurry without causing excessive viscosification and mixing problems at the wellsite. The suspending aid was prepared from water-soluble, thermally stable monomers copolymerized with degradable crosslinking monomers. The crosslinks degrade as the temperature of the slurry increases, ultimately resulting in dissolution of the polymer and concomitant slurry viscosification. The performance of the suspending aid was demonstrated by means of laboratory testing under typical Eagle Ford shale conditions. Improvements were observed in terms of fluid-loss control (54 cc/30 min [control] to 28 cc/30 min), free fluid (5% [control] to 0%), sedimentation (Δρ 5.2 lbm/gal [control] to Δρ 0.2 lbm/gal), and consistometer off/on tests. Three field examples from the Eagle Ford are presented where the suspending aid was used to establish the desired mud-spacer-cement rheological hierarchy at bottomhole circulating temperature (BHCT); provide sufficient slurry stability to set the liner top plug, circulate out excess cement, and produce a competent cement sheath; and improve the mixability and stability of a barite-weighted spacer.

You can access this article if you purchase or spend a download.