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ABSTRACT

In this paper, we describe an array or
vez%or processor tlnat,with only one basic
~-it~metic operation, can be used in parallel
b-izka central processor for numerical reservoi
,.<~t-lation.G-..4_ In doing so, we demonstratea
>zr~itioaing cf the problem to balance the
----.,+.+inns~ ~osd between the processors under.-L...+Qu“u“-”---
~:?.ecmstraicts f=posed by the instruction sets
az: the relative speeds. We also discuss cer-
~Z~n p.ath&qettca~aspects of the partitioning

=-2 tne iterat%vs algorithm. Finally, we.-..$-.
yzaseat results from nume~ical experimentsusin

-=,..n,.?cl cn. with @l IBM 360,/85??~~lbifi+jw k-ie=j~~GCZS... .....
75, 65 or U.

~dex Terms for IB4 Subject Index

Am3y Processing Mathematics
Reservoir Modeling Numerical Analysis
---k~L Computer Applications
SG3 IBM 2938

Much has been written recently in the area
o: parallel computation. Some problems have
bsen attacked by using several identical genera
pu.~ose proc ssing units sharing a common
!z~~:orybank.5 Other problems have motivated th
design of some highly parallel, special purpose
arithmetic units arranged in two-dimensional

X??erences and illustrationsat end of paper.

arrays, each with its own memory and each with
the ability to communicatewith some of its
neighboring units.l

In this paper, we consider a very elemen-
tary type of parallel computationthat is a
coz-oinationof these two types. The idea 2s to
augxent a general purpose computerwith an
auziliary arithmetic unit of special type. The

:- ..* .,------+co=putatlonaloDJecz~v= Ati~o place - -–-=-~ lnrz~ part
of tinecomputationalload arising out of prob-
le=s such as numerical reservoir simulation in
the special unit. This objective dictates that
the unit be floating point and operate at high
s~eed on vectors and band matrices. The
econamic objectives are to create a system tliat
is much less expensive than two general purpose
cectral processing units and that is several
tties as fast as a stand-alone central proces-
sor.

u particular, we show that if the auxil-
iary arithmetic unit -‘ - --*.IU- --= m+h, wrucn we WLU ~lenUGAo....
call the array processor, contains only one
basic vector function, then we can construct a
parallel algorithm for reservoir simuiatiofi.
Further, we have implemented this algorithm on
a~ IBM 360/44, 65, 75, 85 with an IBM 29% array
processor and we present numerical results from
these programs. In Section 2, we give a func-
tional description of the array processor. In
Section 3, we identify the basic computation
kernels in a standard reservoir model. In
Sections 4 through 6, we evaluate these kernels
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for array processing and present a parallel the array processor will fetch the first r com-
algorithm. Finally, in Section 7, we present ponents of each of the vectors u, v and x and
numerical results using the IBM 2938. compute the first r components of y in parallel

[essentially]. Each subsequent set of r com-
FIJNCTIONALDESCRIPTION OF AN ARRAY PROCESSOR ponents is computed until the length n is ex-

hausted.
Basically, we want an auxiliary processor

that performs as few operations as possible and To illustrate the importance of the index
that can be used for parallel computation in r, consider the following instruction:
reservoir simulation. The idea of having only
a few operations is, of course, motivated by Y~ } Yi + ‘i * Yi_~

cost considerations. These same cost consid-
erations, as well as speed considerations, i= s+l,. ..,n s >1.. . . . . . [21
further dictate the type of operations that we

—

can hope to execute on the auxiliary processor. If this instructionis performed serially, one
For instance, if we only perform vector opera- yi at a time, then.each of.the computed values
tions on the auxiliary processor, we cm use Yvstl V = 1,2... depends on Y1. The original
“pipelined”hardware. Secondly, if we only value of ystl is not important since its new
add and multiply and not divide, the cost of value is computed before it appears as data for
the processor will be considerablyless. Thus, y2stl” On the other hand, if Eq. 2 is per-
cost and speed factors in hardware design, lead formed completely in parallel, only the new
us to a very specialized instruction set. value of ystl depends on Yl, and the new value

of Y2S+1 depends on the original value of ys+~.
The object of this paper is to show that

this limited instruction set is quite suffi- In thecase of the array processor, we
cient to increase throughput significantly. In compute r elements at a time in parallel. Thus
order to accomplish this objective,we first if s>r the results are exactly the same as if

.._.
fiescrlo~an ~~~~J” ~~~~e~~~~ with the above Eq. 2 were performed serially, but if s<r, the
chzrac%?ristics. For our purposes, a broad resulting vector y will not necessarilybe
factional description of the array process~r either a truly serial or parallel result. This
vill be sufficient. We will need the arrzy considerationWill be important to us in eval-
p~~~e~~~r to execute only one arithmetic uating iterativetechniques for array proces-
furic?zizc: sing.

Yi + Ui + vi*xi i=l t.-.l n. COMPUTATIONKERNELS OF A REPRESENTATIVEMODEL

. . . . . . . . . . . . . . . . . . . [1] Before we can identify the array processor
uses in reservoir simulation,we must identify

Tk ‘.r%?iotissubcases of Eq. 1, SUCh as Yi-lli + what we might call the computationalprofile of
y:. V*X.:;> , 1 may of course be separate instrue- the problem. As we might expect, there is con-

~lons-:zrthe purpose of effici~ficy. ~ ~~~”y s~derable variation in this profile from model
2rocesssr program is a string of these instruc- to model. Some models are input-outputbound o;
tio?isin any order. even relatively slow central processing &its.

Other models perform multicomponent flash calcu
T??earray processor progr~? and data are lations in each cell of the model at each time

stmed :3 core along with t% pragrsa antidata step. However, by and large, the standardmode
far tks central processing unit. The arrzy pro- today consists of two or three, coupled, quasi-
cess~r zad the central processor execute their linear, parabolic equations. The method of
g?agraz simultaneously. Thus the two processors solution is also reasonably standardized. The
are inde~endent. However, we will need, and we equations are linearized by using the values of
zssume there exists a method for synchronizing the unknowns, pressure and saturation,at the
~~,e~WT.~priagram~when necessary. For instance, previo~s time step, in the coefficient calcula-
i? sa Instruction in the central processor pro- tions.~ A backward time ti%ffereaceis ‘use(lfor
gr~s.is not to be executed until the arrcy pro- the purpose of stability.g Thus, a large band
cesssr is at a certain point in its program, set of simultaneouslinear equations must be
~~e~ the central processor has the ability to solved. The model and the method of solution
determine whether to wait or continue. .*-L-J--+L.+ +hq -selll+imu mutations fallalcW,W WGU UAAG .V==+.-.-= --- r

into two distinct categories: [1] coefficient
The final functional characteristicthat evaluation and [2] solution of lipear equations

concerns us is one that might be called the On most models, coefficient calculationuses 30
parallel or recursive index, r, of the array to 50 percent of the total computationtime
prccessw. !!?helength: n: of the vectors in since the elements of the matrices must be re-
Eq. 1 can vzry from one instructionto the next, computed each ttie step. m fa~t~ =XFCLAe=Ce--------

yet the array processor will always perform the has shown that some of the contributingterms
operztion in bursts of r components. That is, in the matrix elements are so sensitive to

D
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0

change that if an iterative scheme is used to
solve the linear equations> those terms should
“berecomputedwith each iterative step within
the time period so that they reflect the func-
tional value correspondingto the best approxi-. L --------=4 cs+17~g+.inn.~~tlon or the presenu preSSULGD -U .........-.

In order to identify the computational
steps in more detail, we must now introduce a
nodel. From the above discussion, it is clear
that a single, quasilinear~Pressure equation
will, to a high degree, reflect the computa-
tional profile OL W.= ~v..&AA---- ....-.–

- . . . . -~-ml i Pa+eii mndel~ . our

problem, in two-space dimensions, is thus
a“~ (P(x,y,p) *) + + (P(X,YJP) *

+ Q(X,Y)
*.. ..[3]

= R(x,YtP) at

with boundary conditionsp[x~yyto] given:

~p(x,y,t)+ f3*(xfyft) = Constant fol

(x,y)cr and t ~ tO,

w. ere ris the baondary snd ~/~n is the normal
[~utward]derivative.

Since Eq. 3 involves only a [single-phase]
Eressure, there is no saturation. In practice,
however, the variations of the coefficient
~>~ctions with saturation ~d the variation Of
sat~ation ~.itht~,e are more important th~
*--~-,=~~iati~~s Of the coefficient fU,UCtiOnS

xitll pressure. Thus, in order to keep the mode
s~~p~e m~ yet ret~in the computationalfaVOr
c: a full scale model, we will assume that P
-;zrieswith p in a manner that is computation-
zlly similar t~ the variation of relative perme
z“k$lity,k~, with saturation divided by the

Z* .,:?fin”;+.,>.~riati~~.~~
‘-atiuaLUJ> :>

~~i’~. pj and that R
.b~%yieswith p in a manner that is computation-

similar to the va~iatioa of saturation
time divided by the variation of pressure
time.

More explicitly, we will assume

1. R varies,vi.thp more strongly than P
~3 that at the ritntime step the left-hand side
OY Eq. 3 can be linearizedby replacing
i?!x,y,pn]with F[xjyjpn-l] as in Ref. 2. How-
.

e.;er,RIX,Y,pnl should, in anY iterative solu-

z:zn of the nch time step, be replaced at-each
step of the iteration by R[x,y;Pn] where Pn is

t??:epresgnt approximationto Pn.
2. !Thecoefficient function P has

following fo.rm~
the

P(x,y,p) = p(p)k(x,y)kr(p)

P (p)

where p and k vary like density and perme-
ability, and p = P[x,y,tl.

3. The function k[x,y] is stored as a
table, whereas the functions p, kr and p are
curve fitted as follows: i

kr (p) Szcpv
:=” ‘“.

1

u(p) ~ x C2VPVv
V=o

2
z c3vp”

V=o

[

2
z c4vp”

V=o

4. R has the following form.

R(x,y,p] ~ (#)(x,y)U(x,y,p),

wkre !5
U(x,y,p) = z wv(x,y)p~.

V=o

The constants cVV p : 1,...4; V= O,...,3

?S3and the functions $(XJY),WV(X,Y) “=0,..

.,5 are assumed known.

We do not intend to imply that the above
polynomial curve fits are in any way an indus-
try standard. The subject of proper curve
fitting techniques cannot be consideredhere.
Thus the above approximationsare qu%te arbi-
trary.

Besides the advantages of simplicity, and
computationalsimilarityto more complicated

I models, the above model has the third advantage
that it canbe used [and later is used] for “
pressure studies of the type found in Refs. 2,
6 andlo.

Let F be the finite difference matrix
correspondingto the left side of Eq. 3> in
which the points are numbered vertically [say].
Let

R = diag {R(x,y,~n)]

Q = diag {Q(x,y)}

Then we have

(F
1-~ R)pn=-~Epn-l -Q-
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B

AND AN ARRAY PRO[

Let A= F--&R,

B= -*R,

b= = Bpn-l - Q .

Then the algebraic problem is

Apnebn . . . . ...=. ..s. [4]

There exist a number of iterativemethods
for solving Eq. 4. In this paper, we will
consider only two of them: Successive line
over-relaxation [SLOR] and iterative [as
opposed to noniterativel]alternating direc-
tion implicit [ADI]. Of these two, we will
only look at ADI in detail. In using ADI, we
have A = H t V and we have no parameters rl,
. . . ,rn . We compute

o

[

(m-~)
(H + rm) Pn = (rm-V)

1(V+r)~)
(~-+

mn
= (rm-H) p

m=l, ....no

(m-1)

P + bn

+b
n

. . . [51

::s-awe are faced with the problem of
solvicg tridiagonal e~uations on the array
prscessar. Any direct”methodfor doing so is
boun2 TO involve a-division at each step.
No?mal Gaxssion elimination,for instancej is
?.c)ta= ~YrEY processcr o~erationj since the
matrix mst be triaagularized sequentiallyand
every %hircloperation is a division. Clearly
= alg~ritk!.’is required in vhish all the
diviii~g can be done zt once and which allows
the snzputationof a good many results in
para_~~ , The LU decczpositicmthus suggests
i:sel? far the first ~roblem, and the fact thal
Eq. 5 <s reciuc%ble[i.e. ~=Lw-Y&...AGnmII-lo,4 ~y line~]———-.
solves the second. Thus we hzve the following
cozq?uxzticmalsteps.

I. STS3S performed once on:y or occasionally
L. Computation [or read in] of Q
nJ. Computation [or read in] of boundary

values
c. Evaluation of the ADI parameters

‘i 1 s1, .... no

II. Steps performed once per time step
Can~utation of F

III. Steps performed each time step [n] for
=ach ADI parameter [m]

A. Computation of diagonal of B
DQ. Computationof diagonal of A
c. Computation of b

50R IN PARALLEL sPE-28~

(m-1)
D. Computationof (rm-V) pn + bn

(m-% )
and (rm-H) pn +b

n

E. Decompositionof rm+H, and rm+V

F. Forward and backward H and V sweeps
G. Evaluation of convergence criteria

Fo; convenience,in the next three sec-
tions, these steps are.re~erred to by the abQVe
numbers and letters. We are, of course, only
interested in the computationsinvolved in II
and III.

COEFFICIENTEVALUATION ON THE ARRAY PROCESSOR

Evaluation of most of the computation
kernels of the last section for array processin
is straight forward. For instance, consider 11
the computationof F. me functions kr and K
are polynomials in the vector p and can easily
be computed on the array processor. On the
other hand, the function p requires a test on
each element of the p vector before the coeffi-
cients can be selected. Also, from the assump-
tions in Sec. 2, the division by v cannot be
performed efficientlywith the prescribed
instruction set for the array processor.

Let the grid consist of the Points [xi>Yjl
i = l,...,nl; j ❑ 1,...,n2. The horizontal
terms in the diagonal elements of F are

--+ j P(x 5 (p(xi-~+k~
(Ax) ~=~

i-~+k’yj’”

Yltt) + P(xi+k,yj?t) )).

Let P[xl be the vector whose elem:nts are the
points

.

numbered vertically. Similarly, let PIYI, be
the vector whose elements are the vertical
arrangement of the points

{os(p(xi,yi+~, t) + p(xi,yj,t)) ;

i= O,...,n ~ ; j=O,. ..,n2}

We define ~[x] and F[y] similarly.

The parallel program in Table 1 is then
possible for computingF. The idle CpU the
can, of course, be used to output the Previous
p vector.
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‘ALUATIONOF ITERAT~ METHODS FOR ARMY
r5ZSSING

In the third section,we noticed that the
?idiagonalset of ADI equations

(v+ rm)py) = (rm -~ )s-%) + bn
...

. . . . . . ““ . \bJ
. . . . . .“”””

re decoupled by lines. Hence, we can simulta-

‘m) (xi,yj,tn) i=l~eouslysolve Eq. 6 for Pn

,.. .,n .
3

Hence we have identified a
,ossible‘vectoralgorit~”” ‘otice ‘hat ‘e

‘m) (Xi, Yj, tn) j=:a.nnotsolve Eq. 6forpn

L,.. .t‘2 simull.tmeouslyby any of the usual
~irectmethods for linear equations UdeS5 the
hadexof parallelism) ‘~ ‘s One-

In SLOR, ou the o<%’r.!%%..the ‘ituati~n
is not as nice. Initeadof having a “global

[i.e., n1n2x nln2] decoupled tridiagonal
system, we have onlY a “local” [ioeQj n2 x ’21.

~~upled, tridi%gonal sYstem. In solving for

‘m) (Xi,yjltn) j=lf ‘2 ‘e ‘seD
. . . .

-n

~ ‘m) (Xi_~lYjlt~) j=l, .. ..n2 ‘hich
-n

‘m-l) (Xi+~,yjl----e have just computed) ~d Pn

tn) j=l, ...n2. Thus neither the x-directio

~--,~ the y-direction allows Us a vector of non-.L-
trivial len~p., the elenisztsOf V-hit-ncan ‘~

camputed simultaneously. We can correct th~s
~.;+.,,=tionb~~sing the s~-called ‘ed-black---_,___——
:,rde??inggr;tk?r than the successive ordering
‘.;~ththis cr~er~ng, we can simultaneously

‘m)(Xzi, j’+ftn)ccr,putepn i=l, ....nl\2#

z>.enp(m) (x2i_~lY~utn) i=l, .,.,nl/2.
n

-ienote that t>.isordering is twO-cYclic and
~~=sisten$;heace the asymtotic rat: of con-
-:ergence is the same as the successive

:rdering.g Thus either ADI or red-black SLOR.—--..LL=. 1.10 nnml look 3
~ee possible array a~gur~uu1i=. .~ ----

ZWATION SOLVIrtGON THE ARRAY PROCESSOR

We first consider kernel IIID, computation

(m-l) ~
of (rm-v) Pn b and ‘rm

-H) ~:-%)+ b.

-t rm-H be stored as an [nlnp)zl arraY~

H:v k=l~” - “’nln2 ;
v= 1,2.

D~ z correspondsto the diagonal of rm - H, =d
m’

1 correspondsto the n~tl~ sub- and super-
K>J-
iagcmals with zeros in the firs

T
n2 positions.

[m-l .
et p stand for the vector Pn

We can then

[m-l] in three stepS.
ompute [rm -H] Pn

*

qk *P
+ ‘k,2 k

k=i,. ● vn/~2

qk+ ‘k + ‘k+n2,1*pm+n2rl

k 1,. . .,= (nl-l)*n2

*p
‘k+n2 +. ‘k+n2 + H k+n2,1 k

k 1,. . .,= (nI-l) *n2

The treatment of the decomposition,III E
is more complicatedand is related to the
manner in which we perform 111 F, the forward
and backward sweeps.

Let
m

H+rm=LmU , . . . . . . . . . [7

~here

Lm =

and

urn =

[

%

,,m
“2,2

‘!,n2+l

urn ~
‘4 ‘n3

u
nln2tn1n2

L
The forward sweep is an array ~peration.

Mathematically,it is accomplished In nl-l ste~
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using vectors of length n2. Let

mnLLI=C.

rl

Zi + c. - v: *Z i = l+jn~,
1 L-rl

2
i-rl

2

. . .,(j+l)n2.

mwhere v = (2:2+1,1, . . ., ~n3, n4
)t.

On the array processor, however, we only
need two instructionsto perform the above
n -1 steps, provided that the index of paral-
l~sm, r, is less than or equal to n2- These
instructions are

Zi + Ci i=l ~...~nn1
m

Zi+zi-v *Z
i-n2 i-n2

i =n
2

+ 1,
““” ’nln;

If r > n2, we nl instructionsof course.

Upon division by the diagonal of ~, the
b%ckward sweep is accomplishedin simlla.r
fas~i~n. Hence, the decomposition,III E,
shmuld supply us h’ith.the vectors @, and

,,m ,1 1 ~t=w ,...;
‘jF-
1,1 urn

‘ln2’nln2

m

%12+1 Ur’

zm (m
‘4n3= J-..r )t.

‘1,1 Um
‘,n2’nln2

From Eq. 7 we have

m
= (rm + ‘)k,k+n2

‘k,k+n2

k=l f...~n3 , . . . ● . . . . . “ [81

m...

‘k+n2, k
= (rm + H)

k+n2,k
/ U;,k

k= l#...tAnA 3“

By symmetry of rm + H, and Eq. 8 we have

m m m m

‘k
= :-Hk+n ,1 + p~ )* w.

‘k =
2 m “’k

k= 1,. ..,il
3“

Thus once @ is known, @ can be computed on
the array processor. The vector # itself must
be co~uted with the central processor because
of the divisions involved. That is

vu:k = [(rm + H)krk ‘_(rm

2 -J
+ ‘)k-n2,k * (~,qj tl

‘-n2’k-n2’J

k= n2+l, ....nln2.

We ~ar,thus perform the following parallel
program in the computationof PB. h the CpU>

m-1
all data involvingR will use pn , smd in the
array processor all data involving R will use
m-2
Pn “

NUMERICAL RESULTS

We implementedthe above program on an IBN
-System360/44, 65, 75, 85 with an IBM29%
Array Processor. We wrote two separate program
one with the 29% and one without. We kept

the details in the coding of the two programs a
identical as possible. Our object was to deter
minethe ratio of computationtimes of the two
programs. Our test program used”four ADI

L--- r.-+ v l.in.h ?.P%G 1 12 me reservoirparaEEbCL= ,mLue. .==..p...-_.s
was rectangularwith zero pressure boundaries
and one in~ectionwell.placed at any interior
mesh point in the rectangle. The analytic
solutionto thisproblemis given in Ref. 6 in
the form of a double series. It cam also be
determinedby the method of reflections.5 me

timing ratios for the IBM 360/75 are given for

various grid sizes and six the steps in Table
3.

For those who are unfamiliar with the IBM
29XJ we list some of the operating character-
istics. More details are available in Ref. 7.

1. The mathematical function of Eq. 1 is imple
mented in four instructions:

a. Yi + Ui + v. *x.
11

Ui =Ooru<=y
L i

b.yi+ui+v *xi
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c. Yi+ui+xi ‘i

d. yi + ‘i
i =1, . ..rn

_. There is an instructionto take the infin-?
4+..mn-rmAUJ u“..-

\lYllm+ max lYil
i=l,...ln

-. ...-

7
;NSON

5.

.

.

1

I

hence much of kernel III G can also be per-
~ormed in the 2938.

3. All instructionsare in single precision,
~loating point.
4. The index of parallelism is 32.

5. A bit is available in each instructionto
cause a progrmed interrupt in the CPU.

We can now give a general flow
chart

showing how Table fl ‘&:Elt::; k%m:*if
plicity, assume ‘n Im]
can then compute pn

m _ 2,3, . 0 . as sho~

in Fig. 1.

~.e author wishes to tha~ Mr.
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Table 1

Time C.P.U.
A.p.

Syncs. $@#e
,$ld~ell

p(y)
---------- -

*
------ ------ ------ ------ -------

------- -------------
compute

kr(~(x))
l@(Y))

p(;(x)) ~ (p(x))
p (F(Y))

p(fi(y)) -------------------- -----
* ------------ --------------------

l/p(@)
k (~ (x) )k(X)d~(x))=~ (x)

l/~(p(Y))
k:(F(Y) )~(Y~f?(E(y))=L(y!

----------------
*

------------------ ---
------------------------

(i(x)/(P(>(x))(m)*)

lll~~elJ (z(Y)/(u(P(Y))(N)*)
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Table 2

1 1‘ime
;ync.

●

c. P.Ll. I
m-1 I

lIIA: B=B(Pn )

m-l.
IIIB: A=AiPn J

In- 1
lIIE(wm): H=H(Pn )

%

----- ------------------

IIIG

A.P.

lIIC: b=b(p;-z)

UF23
~lIE(vm): H=H(Pn

rn-2
IIIF: H=H(P )

.------------- !!-------

Table 3

T

parallel Time Rat io

I

Grid size tand alone
(minutes) (minute S)

time

.014
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.057 3.3
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