Abstract
Drilling fluids play a variety of roles in order to achieve a smooth and cost-effective drilling operation, the most important of which is their ability to seal permeable walls of the formation through the formation of a desirable mud cake, thereby reducing fluid loss. This study is targeted at evaluating the performance of nano cellulose, cellulose microfibrils synthesised from yam peels as a fluid loss additive and also its effect on the other properties of the drilling mud. The use of nano-cellulose is due to smaller particles forming better impermeable packing that will plug the permeable pore of the mud cake, as well as its ability to hold water. The nano cellulose was synthesised using bleaching, alkali treatment, and acid hydrolysis, and its quality was assessed using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy, which confirmed the removal of some non-cellulose components as well as changes in surface morphology. The results of the experiment revealed that nano cellulose had an effect on the pH, rheological properties, and filtration properties of the drilling mud. The results also show that adding 1.5 g of nanocellulose reduced fluid loss by 8.13 %, and thus it can be concluded that yam peels nanocellulose will be an effective additive at higher concentrations compared to the Carboxyl Methyl Cellulose, a commercial additive.