Oilfield scales are crystalline minerals made up of Na, K, Mg, Ca, Ba, Sr, Fe, Cl from produced water that can precipitate out in the reservoir, well, pipelines and process during the production and transportation of oil and gas. These precipitates can deposit as a result of thermodynamic and/or chemical changes and pose costly flow assurance issues to the oil industry. Several factors have been identified to be responsible including temperature, pressure, ionic strength, pH, evaporation, bicarbonate anion, super-saturation and contact time and water chemistry. Attempts to solve this problem in the past have focused mainly on the use of chemical inhibitors and the most accepted mechanism of scale inhibition is squeeze injection method. While adsorption and retention of scale inhibitors on rock formations needs more research, there had been improvement to better ways of ensuring adsorption and precipitation through nanotechnology including the use of nano-carbon enhanced squeeze treatment (NCEST). The uses of these conventional inhibitors have been found to be toxic to the flora and fauna in biotic communities during water disposal. In order to reduce the environmental burden caused by these conventional solutions and still manage the problem effectively, greener solutions have been proposed. This review x-rays the mechanisms of scale precipitation and deposition, evaluate the solutions that have been provided in literature based on efficiency, economics and environmental impact and propose guidelines to field operators in selecting optimum solutions.

You can access this article if you purchase or spend a download.