Abstract
Developing high-performance environmentally friendly drilling fluids is always a requirement by oil and gas operators to reduce the waste management associated cost with the drilling fluid treatment and disposal. Conventional water-based drilling fluid is formulated with the brine-based polymer which consists of sodium and potassium chloride salts to improve the performance of the polymer and also providing clay inhibition in reactive clay and shale. This paper describes the development of nanotechnology-based drilling fluid to replace salt from the conventional application.
Nano Based Low Saline Water Based Mud (NBLS-WBM) was formulated and developed based on laboratory experiments. Different nano additives with different concentrations were evaluated and the optimum concentration was selected to reduce the sodium and potassium chloride salts concentration to almost zero. The rheological properties and fluid loss were measured according to the API standard before and after hot rolling. Also, HPHT fluid loss, lubricity, and shale inhibition were evaluated. All the results were compared with sodium salt-saturated and potassium-based polymer muds.
Laboratory evaluation of NBLS-WBM indicated that sodium salt concentration can be reduced considerably up to 5% W/V and potassium chloride can be eliminated by adding 1% W/W of nano additive. The rheological properties including plastic viscosity and yield point were constant and stable after hot rolling 16 hours at 250 °F. Also, Clay inhibition improved significantly up to 95% recovery comparing with conventional water-based polymer mud.
Although the application of nanotechnology to improve the performance of conventional water-based drilling fluid was studied by many researchers, it is the novelty of this research to reduce the salt concentration and remove it to develop the new generation of salt-free water-based drilling fluid with economical consideration and lower environmental impact.