During drilling oil, gas, or geothermal wells, the temperature difference between the formation and the drilling fluid will cause a temperature change around the borehole, which will influence the wellbore stresses. This effect on the stresses tends to cause wellbore instability in high temperature formations, which may lead to some problems such as formation break down, loss of circulation, and untrue kick.

In this research, a numerical model is presented to simulate downhole temperature changes during circulation then simulate its effect on fracture pressure gradient based on thermo-poro-elasticity theory. This paper also describes an incident occurred during drilling a well in Gulf of Suez and the observations made during this incident. It also gives an analysis of these observations which led to a reasonable explanation of the cause of this incident.

This paper shows that the fracture pressure decreases as the temperature of wellbore decreases, and vice versa. The research results could help in determining the suitable drilling fluid density in high-temperature wells. It also could help in understanding loss and gain phenomena in HT wells which may happen due to thermal effect.

The thermal effect should be taken into consideration while preparing wellbore stability studies and choosing mud weight of deep wells, HPHT wells, deep water wells, or wells with depleted zones at high depths because cooling effect reduces the wellbore stresses and effective FG. Understanding and controlling cooling effect could help in controlling the reduction in effective FG and so avoid lost circulation and additional unnecessary casing points.

You can access this article if you purchase or spend a download.