In Situ Combustion is an enhanced oil recovery method which consists on injecting air to the reservoir, generating a series of oxidation reactions at different temperature ranges by chemical interaction between oil and oxygen, the high temperature oxidation reactions are highly exothermic; the oxygen reacts with a coke like material formed by thermal cracking, they are responsible of generating the heat necessary to sustain and propagate the combustion front, sweeping the heavy oil and upgrading it due to the high temperatures. Wet in situ combustion is variant of the process, in which water is injected simultaneously or alternated with air, taking advantage of its high heat capacity, so the steam can transport heat more efficiently forward the combustion front due to the latent heat of vaporization.

A representative model of the in situ combustion process is constituted by a static model, a dynamic model and a kinetic model. The kinetic model represents the oxidative behavior and the compositional changes of the crude oil; it is integrated by the most representative reactions of the process and the corresponding kinetic parameters of each reaction. Frequently, the kinetic model for a dry combustion process has Low Temperature Oxidation reactions (LTO), thermal cracking reactions and the combustion reaction. For the case of wet combustion, additional aquathermolysis reactions take place.

This article presents a full review of the kinetic models of the wet in situ combustion process taking into account aquathermolysis reactions. These are hydrogen addition reactions due to the chemical interaction between crude oil and steam. The mechanism begins with desulphurization reactions and subsequent decarboxylation reactions, which are responsible of carbon monoxide production, which reacts with steam producing carbon dioxide and hydrogen; this is the water and gas shift reaction. Finally, during hydrocracking and hydrodesulphurization reactions, hydrogen sulfide is generated and the crude oil is upgraded.

An additional upgrading mechanism during the wet in situ combustion process can be explained by the aquathermolysis theory, also hydrogen sulphide and hydrogen production can be estimated by a suitable kinetic model that takes into account the most representative reactions involved during the combustion process.

You can access this article if you purchase or spend a download.