Well evaluation is the primary method used in the oilfield to determine the true well's production potential and reservoir characteristics. During a well evaluation, downhole parameters are commonly registered using downhole memory gauges, which can only be retrieved and read after the evaluation have finished. The problem with this conventional method is the uncertainty or ambiguity results and the inaccurate data of the downhole parameters; which often lead to inefficient tests times and difficulties for well test interpretation.The use of Fiber Optic for Real-time downhole measurements conveyed on Coiled Tubing (CT) and Nitrogen (N2) Lifting provide a unique live insight that allow us to monitor the well response while production or evaluation is performed, eliminating the uncertainties that surrounds traditional methods.

Nitrogen lifting with Coiled Tubing was introduced as an alternative evaluation method for the common Hydraulic Jet Pumping that proved advantages accelerating well response and increasing the accurate of the reservoir data for well evaluation and artificial lift design nevertheless this still faces the delayed on the pressure data and transient interpretation. Implementing the Real Time downhole measures (P, T) is possible to eliminate uncertainties of reservoir parameters that surround well evaluations, adjust job parameters on-site, optimize job resources and time and finally anticipate artificial lifting design.

This paper will present the results of the implementation of this new method in the area for well evaluation allowing real-time measurements of down hole pressure/temperature. Combining the fluid lifting with N2 through the CT, reservoir response is continuously monitored; thereby, allowing in advance an adequate design of the lifting system reducing nonproductive time. Real-time measurements and accurately data of the reservoir allow defining if a further stimulation treatment is needed. Actual treatment program can be continuously monitored or modified, to achieve optimal results.

The first trial using the system demonstrated that the application can be used with a high degree of accuracy and control for the parameters and treatment designs that are not achievable using conventional techniques as the Hydraulic Jet pumping, gauges conveyed in slick line, joined tubing and/or using surface data to predict downhole behavior.

You can access this article if you purchase or spend a download.