Abstract
This paper presents the development and field implementation of a state-of-the-art bottomhole assembly (BHA) program using the industry's first generic algorithm based on Lubinski's equations. The strengths of the new BHA program are accuracy and computation efficiency, as compared to the conventional finite-element based BHA programs. In addition, the new program integrates static and dynamic models so that users can run both models in the same application. Using the new algorithm, the static model is designed mainly for directional drilling applications, such as optimal BHA design for maximum steerability, bending moment calculations to minimize fatigue failure, and BHA sag corrections to improve survey quality. The dynamic model is based on a hybrid of analytical and finite-element methods to calculate the critical rotary speeds of the BHA. This paper describes the significance of applying these features in a user-friendly application to maximize drilling performance.