Sabriyah and Raudhatain are the main fields producing from the Middle Marrat Jurassic formation in North Kuwait with approximately 5 km distance between the two fields. Raudhatain fluid is considered as Volatile Oil, while Sabriyah is described as Gas-condensate. 16 PVT samples from Raudhatain were analyzed and described as Volatile oil. 12 PVT samples taken from Sabriyah field where 7 samples show gas condensate behavior and rest shows volatile oil.

A key challenge in understanding the Sabriyah fluid characterization is the fact that 5 well samples that showed Volatile oil behavior are not separated from the Gas condensate wells by any apparent barrier. In addition, the initial reservoir pressure is much higher than the saturation pressure, preventing the equilibrium of those fluids.

The objectives for this study are to analyze the physical explanation of coexistent of oil and gas-Condensate in one communicated reservoir with reservoir pressure higher than saturation pressure, apply different modeling approaches to accurately describe the fluid behavior in Sabriyah field and finally capture the influence of uncertainty in the type of fluid on the production forecast.

The physical explanation for this phenomenon was investigated from different points of view: the variation of temperature, compositional variation with depth, existence of geological barriers, and facies changes. It was found that the compositional variation with depth and the change of fluids with changes of facies can provide reasonable explanation for this phenomenon. The first explanation related to compositional variations with depth is supported by the observed data that shows a strong relationship between depth and fluid type, while the temperature did not influence significantly the gas-oil phase change. The second explanation related to the concept of gas and oil charge depending on facies is supported by mercury injection capillary pressure data taken from different depth in the reservoirs, this concept improves the understanding of fluid distribution which could not be explained in previous approaches.

This paper shows the way of modeling this phenomena based on these two explanations, which honor both static and dynamic data with special reference to the effect of these different modeling approaches on the production forecast of Sabriyah field.

The near critical fluids which are the type of fluids in Sabriyah field are usually problematic to handle with Equation of State; therefore solving this particular case is expected to add technical value to reservoirs of the same type of fluids.

The facies dependence of gas and oil distribution and the way of modeling this phenomenon is an innovative view that can contribute to the description of similar fields.

You can access this article if you purchase or spend a download.