Abstract

The Middle Minagish Oolite Formation is 450 to 550 feet thick interval of porous limestone reservoir, composed of peloidal/skeletal grainstones with lesser amount of packstone, oolitic grainstone, wackstone and mudstone in Umm Gudair field, West Kuwait. It is characterized by small scale reservoir heterogeneity, primarily related to the depositional as well as diagenetic features. Capturing reservoir properties in micro scale and its spatial variation needs special attention in this reservoir due to its inherent anisotropy. Reservoir properties will depend on the level that we are analyzing on reservoir (millimeter to meter scale). Here we used Electrical Borehole Image (EBI) and Nuclear Magnetic Resonance (NMR) to capture small scale feature of Umm Gudair carbonate reservoir and compared them with core data In present work, reservoir properties (including texture, facies, porosity and permeability) interpreted by the EBI shows good match with NMR driven properties and core data. Textural changes in image logs also match well with pore size distribution from NMR logs. Further highly porous zones which are considered either due to primary porosity or vugs match with larger pores of NMR logs and these corroborates with also core derived porosity. A good match has been observed between EBI, NMR and cored derived porosity. Permeability calculations have also been made and compared with core data. A detail workflow has been developed here to interpret reservoir properties on un-cored wells, where only low vertical resolution data is available. This technique is quite useful to identify the characters and mode of origin highly porous zones in reservoir section which are generally not identifiable by low resolution standard logs. This workflow will allow us to interpret the heterogeneity at high resolution level in un-cored wells, as results are validated with integration of EBI, NMR and core data.

You can access this article if you purchase or spend a download.