Abstract
History matching of reservoir flow models based only on production data may not reveal deficiencies that affect future predictions. Incorporating saturation and temperature profile data that come from 4D seismic surveys in the history matching process can reduce the uncertainty of reservoir models for the prediction stage. We constructed a field reservoir model from which production history, saturation and temperature profile history were obtained. We started the history matching process with a base reservoir model, the petro-physical properties of which were substantially different than those of the field reservoir model. We propose a new methodology for matching the fluid and temperature profiles by adjusting reservoir petro-physical properties. In this methodology, some grid blocks in a reservoir model were selected judiciously to capture the overall saturation and temperature distribution profiles. In addition to well production data, we included the saturation and temperature profiles at these grid blocks as extra objective functions during the history matching process. The DECE optimization is used to reduce the objective function. We applied this method in a Steam Assisted Gravity Drainage (SAGD) process and matched the saturation and temperature profiles with an average error of less than 2%.