Assessing the waterflood, monitoring the fluids front, and enhancing sweep with the uncertainty of multiple geological realisations, data quality, and measurement presents an ongoing challenge. Defining sweet spots and optimal candidate well locations in a well-developed large field presents an additional challenge for reservoir management. A case study is presented that highlights the approach to this cycle of time-lapse monitoring, acquisition, analysis and planning in delivery of an optimal field development strategy using multi-constrained optimisation combined with fast semi-analytical and numerical simulators.

The multi-constrained optimiser is used in conjunction with different semi-analytical and simulation tools (streamlines, traditional simulators, and new high-powered simulation tools able to manage huge, multi-million-cell-field models) and rapidly predicts optimal well placement locations with inclusion of anti-collision in the presence of the reservoir uncertainties. The case study evaluates proposed field development strategies using the automated multivariable optimisation of well locations, trajectories, completion locations, and flow rates in the presence of existing wells and production history, geological parameters and reservoir engineering constraints, subsurface uncertainty, capex and opex costs, risk tolerance, and drilling sequence.

This optimisation is fast and allows for quick evaluation of multiple strategies to decipher an optimal development plan. Optimisers are a key technology facilitating simulation workflows, since there is no ‘one-approach-fits-all’ when optimising oilfield development. Driven by different objective functions (net present value (NPV), return on investment (ROI), or production totals) the case study highlights the challenges, the best practices, and the advantages of an integrated approach in developing an optimal development plan for a brownfield.

You can access this article if you purchase or spend a download.