Abstract

Detection of oilwell drilling operations is an important step for drilling process optimization. If drilling operations are classified accurately, detailed performance reports not only on drilling crews but also on drilling rigs can be produced. Using such reports, the management can evaluate the drilling work more precisely from performance point of view.

Mud-logging systems of modern drilling rigs provide numerous sensors data. Those sensors measurements are considered as indicators to monitor different states of drilling process. Usually real-time measurements of the following sensors data are available as surface measurements: hookload, block position, flow rates, pump pressure, borehole and bit depth, RPM, torque, rate of penetration and weight on bit.

In this work, collected sensors measurements from mud-logging systems are used to detect different drilling operations. Detailed data analysis shows that the surface sensors measurements can be considered as a main source of information about drilling operations. For this purpose, a mathematical model based on polynomials approximation is constructed to interpolate sensors data measurements.

Discrete polynomial moments are used as a tool to extract specific features (moments) from drilling sensors data. Then we use these moments for each drilling operation as pattern descriptor to classify similar operations in drilling time series. The extracted polynomial moments describe trends of sensors data and behavior of rig’s sub-systems (Rotation System, Circulation System, and Hoisting System). Furthermore, this paper suggests a method on how to build patterns base and how to recognize and classify drilling operations once sensors data received from mud-logging system. Drilling experts compare the results to manually classified operations and the results show high accuracy.

You can access this article if you purchase or spend a download.