The Marrat reservoir in Dharif field is a deep, sour, high pressure oil accumulation of Jurassic age containing light under-saturated oil of 36-38° API. The carbonate reservoir has a porosity range of 10-20% with permeability of 1-10 md. The field was put on production in 1989 through one well. Subsequently, 10 wells were added gradually developing the field. As of date, the field has produced about 12.5% of oil in place, lowering the reservoir pressure from 10,525 to 7,000 psi.

At present, oil production from the field is about 13,500 bbls/day. Due to low permeability, some wells produce with high drawdown approaching asphaltene onset pressure (AOP), estimated at 3,400 psi. This causes Asphaltene deposition in the tubing that requires cleaning to maintain the production level. The major challenges now are to produce the wells above AOP to avoid asphaltene precipitation in the wells or reservoir while sustaining the production level and maximizing recovery.

Hence, Full Field Model (FFM) for simulation studies was constructed and history-matched. Under depletion case, where the wells produce above AOP, field produced about 24% STOIIP. The water injection case shows significant increase in recovery to 40% STOIIP. Since no prior experience of water injection is available for such tight deep carbonate reservoirs in West Kuwait Fields, several key studies such as a) RCAL & SCAL b) Core flood Study c) Water Compatibility & Scale Prediction modeling d) Injectivity test, were carried out to address water injection feasibility.

The present paper shares the results of above studies which indicate that water injection is a viable option to maintain the reservoir pressure to produce the wells above AOP as well as to maximize recovery. Pilot water injection is planned through one well for which the area has been optimized using FFM. At present Pilot Water injector and source wells have been drilled and injection will be initiated with commissioning of surface facilities

You can access this article if you purchase or spend a download.