Abstract
Conformance control in tight reservoirs remains challenging largely because of the drastic permeability contrast between fracture and matrix. Thus, reliable, durable and effective conformance improvement methods are urgently needed to increase the success of EOR plays in tight reservoirs. In this work, we rationally designed and prepared a mechanically robust and eco-friendly nanocellulose-engineered particle gel (referred to NPG) toward this application due to the superior stability. The impacts of superficial velocity, NPG concentration and particle/fracture ratio on the transport behavior in fracture were thoroughly investigated. We demonstrated that the mechanical properties of NPG such as strength, elasticity, toughness and tensile strain were substantially promoted as a result of the interpenetrated nanocellulose. During NPG passing through fracture model, it produced a noticeably greater flow resistance in comparison with the control sample (nanocellulose-free), suggesting the better capacity in improving the conformance of fractured core. It was found that the generated pressure drop (ΔP) was more dependent on the particle/fracture ratio and NPG concentration.