Designing robust EOR surfactant formulations implies performing a number of experiments related to the impact of variable parameters such as injection brine composition and reservoir temperature from near wellbore to in-depth zones. Performance evaluation assays are commonly employed in parametric studies, ahead of the time-consuming coreflood tests. Phase diagram in tubes and spinning drop tests are commonly used, but they do not easily allow deriving representative values of the o/w IFT and can lead to contradictory outcomes.

In this work, we addressed the crucial question of the methods implemented to estimate the IFT in bulk tests and we investigated a model case where the robustness of a surfactant formulation was assessed versus temperature. In the first part, we compared, at optimal salinity, the IFT as classically evaluated by the Huh relationship in tubes to the IFT as determined in a spinning drop tensiometer between, respectively, the microemulsion and the water and oil phases in equilibrated and non-equilibrated situations. In the second part, we evaluated the robustness of a surfactant formulation in terms of IFT versus temperature variation by phase diagrams and spinning drop methods and performed simplified oil recovery coreflood tests, using the CAL-X high throughput device.

Results showed that IFT discrepancies up to one order of magnitude exist between the Huh estimation and the spinning drop results as well as between the different strategies for determining the spinning drop IFT. Such discrepancies can be interpreted from a scientific point of view, but they highlight the need to discriminate between the IFT determination methods in view of representativeness regarding the actual oil recovery mechanisms in the reservoir. The tests campaign for the temperature robustness, performed in the 40-90°C temperature range, showed, again, discrepancies between the two bulk methods. Namely, Winsor III situation was observed from 60°C to 90°C in the phase diagrams with an optimum at 70°C whereas ultra-low IFT was observed only at 60°C in the spinning drop tests. The coreflood tests revealed that very good oil recoveries were achieved from 40°C to 90°C, with evidence of formation of oil banks leading to final oil saturation as low as 5% only from 60°C to 90°C.

These outcomes suggest that, for cases where the various phases are clearly distinguishable in tubes, phase diagrams should be selected as preferred bulk assays. However, these tests provide only coarse estimates of the IFT, which makes performance prediction based on capillary desaturation curves challenging. For this reason, high throughput coreflood tests could also be included in surfactant formulation design workflows to better forecast for the formulation performances.

You can access this article if you purchase or spend a download.