Steam injection is a widespread thermal enhanced oil recovery (EOR) method to increase oil mobility. The introduction of steam heats the reservoir, ultimately lowering oil viscosity and in turn enhancing heavy oil recovery. In the steam injection process, recovery of oil is limited by steam channeling due to reservoir heterogeneities. Early breakthrough implies that there is a large consumption of steam and incomplete reservoir drainage. Injection of surfactant with steam and a non-condensable gas such as nitrogen can generate foam in situ. Foam will redirect steam, increase apparent viscosity and reduce steam channeling. Although the technology is promising, it is not always economically attractive due to the large volumes that must be injected continuously, high adsorption of surfactant on reservoir rocks, and limited thermal stability of the surfactant. The opportunity exists to design steam foam surfactant formulations with improved performance at high temperature.

In this paper, a systematic approach to screen surfactants for field applications at high temperature is presented. A feasibility test was conducted with the surfactant formulation (HSF-X) at target reservoir conditions to understand the thermal stability and adsorption behavior of the surfactant. Investigation found that the thermal decomposition and adsorption of the surfactant on sandstone rock under static conditions was mimimum at 200°C. In core flood testing conducted using silica sand and natural sandstone cores, foam generated by injecting N2 and HSF-X surfactant solution was able reduce steam mobility between 40 to 100 times at 100°C and 10 to 15 times at 200°C more compared to steam mobility in the absence of the foam. Finally oil recovery experiments at 200°C using silica sand cores indicated the ability of the HSF-X surfactant to foam in the presence of oil and enhance recovery of oil (a +20% increase in the original oil in place (OOIP) was observed).

You can access this article if you purchase or spend a download.