The surfactant screening process to develop an optimum formulation under reservoir conditions is typically time consuming and expensive. Theories and correlations like HLB, R-ratio and packing parameters have been developed. But none of them can quantitatively consider both the effect of oil type, salinity, hardness and temperature, and model microemulsion phase behavior.

This paper uses the physics based Hydrophilic Lipophilic Difference (HLD) Net Average Curvature (NAC) model, and comprehensively demonstrated its capabilities in predicting the optimum formulation and microemulsion phase behavior based on the ambient conditions and surfactant structures. By using HLD equation and quantitatively characterized parameters, four optimum surfactant formulations are designed for target reservoir with high accuracy compared to experimental results. The microemulsion phase behavior is further predicted, and well matched the measured equilibrium interfacial tension. Its predictability is then reinforced by comparing to the empirical Hand's rule phase behavior model. Surfactant flooding sandpack laboratory tests are also interpreted by UTCHEM chemical flooding simulator coupled with the HLD-NAC phase behavior model.

The results indicate the significance of HLD-NAC equation of state in not only shorten the surfactant screening processes for formulators, but also predicting microemulsion phase behavior based on surfactant structure. A compositional reservoir simulator with such an equation of state will increase its predictability and hence help with the design of surfactant formulation.

You can access this article if you purchase or spend a download.