The chemical cost to recover an incremental barrel of oil is directly proportional to the surfactant retention, so the single most effective way to reduce the cost is to reduce surfactant retention. The main objective of this research was to demonstrate how surfactant retention could be reduced to almost zero by careful optimization of the chemical formulations for different crude oils. Although surfactant retention has been studied for many years over a wide range of reservoir conditions, its dependence on the rheological behavior of the microemulsion that forms in-situ has not been adequately studied. Thus, in this paper we emphasize the importance of microemulsion rheology and demonstrate how to develop and test formulations with properties that give very low surfactant retention. Novel co-solvents (iso-butanol (IBA) alkoxylates and phenol alkoxylates) were tested in some of the formulations with excellent results. Unlike classical co-solvents used to optimize chemical formulations, the new co-solvents cause only a slight increase in the interfacial tension. A series of ASP corefloods were performed in sandstone cores with and without oil to measure surfactant and co-solvent retention and to elucidate the effects of microemulsion viscosity, salinity gradient, clay content, surfactant concentration and other variables. Dynamic adsorption was measured in cores with the same mineralogy and compared with the retention from oil recovery corefloods to determine the component of the retention due to phase trapping.

You can access this article if you purchase or spend a download.