Post-fracturing production data analysis indicates stimulation of some west Texas wells with surfactant additives did not enhance production as high as expected. Analysis of flowback and produced water for surfactant residues revealed 99% of surfactant was retained inside wells (Rane and Xu 2015). This indicates surfactant plating out on rock in the near-wellbore (NWB) region, restricting travel deeper into the reservoir, which compromises well performance. This study presents a sacrificial agent (SA) to cover rock surface near the wellbore, allowing surfactant to penetrate the formation.

Literature precedent exists that polyelectrolyte (PET)-based SAs could significantly reduce surfactant adsorption not only onto a variety of outcrop minerals (Carlpool dolomite, calcite, kaolinite, Berea sandstone, Indiana limestone, etc.) and metal oxide nanoparticles, but also unconventional shale formulations in which surface area can be up to 700 m2/g. In this study, the adsorptions of surfactant and SA to proppants were first examined. Results indicate no adsorption was observed to proppant for both surfactants and PET-based SAs. SAs (0.5 to 1 gal/1,000 gal (gpt)) were then injected with surfactant (1 to 3 gpt) at an appropriate ratio into column-packed shale formulations (primarily composed of calcite, dolomite, quartz, illite, pyrite, and plagioclase feldspar) to investigate its effectiveness in controlling surfactant retention caused by adsorption. Laboratory testing revealed injection of 3 gpt mixture of surfactant and SA has a similar adsorption profile (surface tension as a function of time) as 3 gpt surfactant alone based on the dynamic surface tension measurement. Notably, the addition of SAs resulted in lower surface tension and enhanced hydrocarbon solubility; and thus, an improved oil recovery by surfactant was achieved as evidenced by the oil recovery tests. Additionally, 68% friction reduction of the fracturing fluid with surfactant and SA was sufficient for the field operation compared to the guar-based fluid used in the hydraulic fracturing applications.

As a result of the laboratory findings, field trials were executed on a three well pad in the Permian basin (PB). For the first 30 days oil and gas production appeared to be significantly higher than the average production from offset wells in the same area that were previously fractured with the same surfactant.

You can access this article if you purchase or spend a download.