Abstract

The Green River, Utah holds the world's greatest oil shale resources. However, the hydrocarbon, which is namely kerogen, extraction from shales is limited due to environmental and technical challenges. In this study, we investigated the effectiveness of the combustion process for shale oil extraction. Samples collected from the Green River formation were first characterized by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Then, series of dry combustion tests were conducted at different heating rates and wet combustion tests by water addition. The combustion efficiency was enhanced by mixing oil shale samples with an iron based catalyst. The effectiveness of dry, wet, and catalyst added combustion processes was examined by the thermal decomposition temperature of kerogen. Because the conventional oil shale extraction methods are pyrolysis (retorting) and steaming, the same experiments were conducted also under nitrogen injection to mimic retorting. It has been observed that the combustion process is a more efficient method for the extraction of kerogen from oil shale than the conventional techniques. The addition of water and catalyst to combustion has been found to lower the required temperature for kerogen decomposition for lower heating rate. This study provides insight for the optimization of the thermal methods for the kerogen extraction.

You can access this article if you purchase or spend a download.