Given limited CO2 supply, operational constraints, and pattern specific reservoir performance, WAG schedule can be customized such that NPV or other metrics are optimized. Depending on the WAG schedule, recovery can fluctuate between 5–15% at the pattern scale due to reservoir heterogeneity causing variations in sweep efficiency. An analytical method was developed to optimize WAG schedules that couples traditional reservoir modeling and simulation with machine learning, enabling the discovery of optimal WAG schedules that increase recovery at the pattern level. A history-matched reservoir model of Chaparral Energy's Farnsworth Field, Ochiltree County, TX was sampled intelligently to perform predictive reservoir flow simulations and artificially build an intelligent reservoir model that samples a broad range of possible WAG scenarios for optimization. The intelligent model generates the next "best" sample to investigate in the numerical simulator and converges on the optima, quickly reducing the number of runs investigated. Results in this paper demonstrate that there can be significant improvements in net present value as well as net utilization rates of CO2 using this analytical technique. The WAG design generated by the intelligent reservoir model should be deployed in the field in early 2016 for validation. It is intended that the intelligent reservoir model will be updated on a regular basis as injection and production data is obtained. This effort represents the beginning of a paradigm shift in the application of modeling and simulation tools for significant improvements in field production operations.

You can access this article if you purchase or spend a download.