Low-salinity waterflooding has been portrayed as an effective enhanced-oil recovery technology. Despite compelling laboratory and field evidence of its potential, the underlying mechanisms still remain controversial. In this study, the enhanced-oil recovery mechanisms are investigated considering a distinct interfacial effect, i.e. water-crude oil interfacial viscoelasticity, through analysis of capillary hysteresis. An experimental setup with an oil-wet and a water-wet media on each end face of the core sample was utilized to capture capillary and rock electrical properties hysteresis. Moreover, new improvements over the traditional quasi-static porous plate method were implemented to accelerate measurements. Two experiments were conducted on Minnelusa formation rock samples and TC crude oil, at low temperature (30 °C) and without any significant aging as to minimize wettability alteration. Two core plugs were flooded with high-salinity and low-salinity brines, separately. It is found that the dynamic-static method with a ceramic disk, i.e. a combination of continuous injection in drainage and stepwise quasi-static method in imbibition on short 1" long core samples, allows one to capture the correct envelopes of the capillary pressure curves and save ~ 30% of the total time; a thin membrane is anticipated to save ~90% with respect to traditional quasi-static porous plate method. The capillary hysteresis experiments at low temperature prove that low-salinity brine is able to suppress capillary hysteresis. This is attributed to the formation of a more visco-elastic brine-crude oil interface upon exposure to low-salinity brine, leading to a more continuous oil phase. In addition, we show that wettability plays an essential role on electrical resistivity and the more oil-wet, the more hysteresis occurs, namely that resistivity values in imbibition are higher than those in drainage. The findings in this paper demonstrate that low-salinity waterflooding can still increase oil recovery even in the absence of wettability alteration.

You can access this article if you purchase or spend a download.