For over 10 years research has been carried out on the impact of low salinity waterflooding on oil recovery. Data derived from corefloods, single well tests, and log-inject-log tests have shown that injecting low salinity water into an oil reservoir should result in a substantial increase in oil recovery in many cases. The results varied from 2 to 40% increases in waterflood efficiency depending upon the reservoir and composition of the brine.

In 2005, a hydraulic unit was converted to inject low salinity brine into an Alaskan reservoir, by switching a single injection pad to low salinity water from high salinity produced water. An injector well and 2 close production wells were selected within a reasonably well constrained area. A surveillance programme was devised which included capturing produced water samples at regular intervals for ion analysis and the capturing of production data.

Detailed analysis of the production data, and the chemical composition of the produced water, demonstrated an increase in oil production and provided direct field evidence of the effectiveness of LoSal™ at inter-well scales. Additionally, the response of the reservoir to low salinity water injection was confirmed by single well chemical tracer test.

In parallel, laboratory studies have led to mechanistic understanding of LoSal™ in terms of multiple-component ionic exchange (MIE) between adsorbed crude oil components, cations in the insitu brine and clay mineral surfaces. The results clearly show that the enhanced oil production and associated water chemistry response was consistent with the MIE mechanism proposed.

The oil production data have been modeled using an in-house developed modification to Landmark's VIP™ reservoir simulation package. An excellent match for the timing of the oil response was obtained which provides a good basis for predicting the result for large scale application of LoSal™ flooding.

You can access this article if you purchase or spend a download.