Since the early development of unconventional resource plays, slickwater fracturing fluids have expanded rapidly and are now the most common type of fluid system used in the industry. Slickwater and viscosifying friction reducer (VFR) fluids consist of polyacrylamide (PAM) polymers and are typically delivered to location in a liquid form such as a suspension or emulsion in a hydrocarbon-based carrier fluid. Recently, advances in dry powder delivery operations have provided unique advantages over the liquid versions of FRs including cost savings and improved health, safety and environmental (HSE) aspects. This paper describes the dry powder delivery process and describes the advantages that this new technology has brought to field operations.

The method involves delivering polyacrylamide powder for slickwater fracturing treatments directly into the source water on location, thereby eliminating the use of liquid polymer slurries or emulsions. Liquid friction reducers typically contain 20-30% active polymer loading, with the remaining volume being the carrier fluid to keep the polymer in suspension. By delivering 100% powder, several benefits are gained including elimination of truck deliveries of FR liquids to location, reduction of total chemical volumes by 70-80%, reduction of spill hazards, and lower overall chemical costs. Different powders are available for various applications including the use of fresh or produced water, and viscosifying or non-viscosifying polymers.

The key technology for "dry on the fly" (DOTF) operations is the powder delivery equipment. Due to the different molecular structures between polyacrylamide and guar polymers, delivering PAM is more technically challenging than guar and requires much higher mixing energy to achieve proper dispersion and hydration. The delivery system described in this paper uses a unique technology which creates the necessary conditions for powder mixing and has been successfully applied on over 350 wells since early 2019, with over 7,000 tons of polymer delivered.

You can access this article if you purchase or spend a download.