Predicting fracture behavior is important for well placement design and for optimizing multi-well development production. This requires the use of fracturing models that are calibrated to represent field measurements. However, because hydraulic fracture models include complex physics and uncertainties and have many variables defining these, the problem of calibrating modeling results with field responses is ill-posed. There are more model variables than can be changed than field observations to constrain these. It is always possible to find a calibrated model that reproduces the field data. However, the model is not unique and multiple matching solutions exist. The objective and scope of this work is to define a workflow for constraining these solutions and obtaining a more representative model for forecasting and optimization. We used field data from a multi-pad project in the Delaware play, with actual pump schedules, frac sequence, and time delays as used in the field, for all stages and all wells. We constructed a hydraulic fracturing model using high-confidence rock properties data and calibrated the model to field stimulation treatment data varying the two model variables with highest uncertainty: tectonic strain and average leak-off coefficient, while keeping all other model variables fixed. By reducing the number of adjusting model variables for calibration, we significantly lower the potential for over-fitting. Using an ultra-fast hydraulic fracturing simulator, we solved a global optimization problem to minimize the mismatch between the ISIPs and treatment pressures measured in the field and simulated by the model, for all the stages and all wells. This workflow helps us match the dominant ISIP trends in the field data and delivers higher confidence predictions in the regional stress. However, the uncertainty in the fracture geometry is still large. We also compared these results with traditional workflows that rely on selecting representative stages for calibration to field data. Results show that our workflow defines a better global optimum that best represents the behavior of all stages on all wells, and allows us to provide higher-confidence predictions of fracturing results for subsequent pads. We then used this higher confidence model to conduct sensitivity analysis for improving the well placement in subsequent pads and compared the results of the model predictions with the actual pad results.

You can access this article if you purchase or spend a download.