In previous frac designs, proppant tracer logs revealed poor proppant distribution between clusters. In this study, various technologies were utilized to improve cluster efficiency, primarily focusing on selecting perforations in like-rock, adjusting perforation designs and the use of diverters. Effectiveness of the changes were analyzed using proppant tracer.

This study consisted of a group of four wells completed sequentially. Sections of each well were divided into completion design groups characterized by different perforating methodologies. Perforation placement was primarily driven by RockMSE (Mechanical Specific Energy), a calculation derived from drilling data that relates to a rock's compressive strength. Additionally, the RockMSE values were compared alongside three different datasets: gamma ray collected while drilling, a calculation of stresses from accelerometer data placed at the bit, and Pulsed Neutron Cross Dipole Sonic log data.

The results of this study showed strong indications that fluid flow is greatly affected by rock strength as mapped with the RockMSE, with fluid preferentially entering areas with low RockMSE. It was found that placing clusters in similar rock types yielded an improved fluid distribution. Additional improved fluid distribution was observed by adjusting hole diameter, number of perforations and pump rate.

You can access this article if you purchase or spend a download.