Providing and sustaining fracture conductivity in secondary fracture systems created during the stimulation of very tight unconventional shale plays is critical for sustaining productivity and reducing decline rates. In this paper, a discrete fracture network model which includes proppant transport will be utilized to show the effect that an unsupported vs supported dilated fracture network has on the decline and ultimate recovery of available resources in shale. In addition, the characteristics and properties of a microproppant will be described. The physical properties of the material, the oil and water conductivity of the proppant at various fracture widths along with the resultant Fcd will be presented. Utilizing a bridging factor of 3, a comparison of the surface area propped by various proppants will be made. The proppant transport characteristics will also be described. The production benefits of utilizing very small proppants will be demonstrated utilizing production data from four different rock systems including the Barnett, Woodford, Utica, Permian Basin and Marcellus shale. Several additional operational benefits including reduced pumping pressures and far field diversion to prevent fracture hits will also be discussed. Finally, operational considerations will be described including utilizing liquid slurry's, pump wear evaluations and recommended proppant addition points will be described.

You can access this article if you purchase or spend a download.