In this paper, we introduce a novel fracture imaging method which uses high resolution 3D laser scanning to develop detailed surface maps of the core fracture faces. The digital maps are then used to analyze fracture surface characteristics wherein observed variations provide us with meaningful insights into the fractures. We share a mathematical approach for roughness evaluation to identify morphological properties for individual fractures within rock samples. The approach is tested on core extracted at the Hydraulic Fracturing Test Site (HFTS - 1) in the Permian Basin. We characterize the roughness variations with depth across the cored section. In addition, we compare results obtained previously from core sampling and analysis to demonstrate that proppant entrapment observed within the cored interval is strongly correlated with the changes in fracture morphology. We also use calculated roughness along with the the changing behavior of roughness radially away from the center of fracture faces to predict roughness "types" such as propagational features or textural roughness characteristics.

Based on the specific fracture characterization work shared here as well as other potential uses, our paper highlights significant advantages such scanning and digital imaging of fractures may have over traditional cataloging using photographic imaging. Furthermore, as demonstrated in this study, data sampled from these detailed maps can be used to further characterize and analyze these features in a more systematic and robust manner when compared with the more traditional geological analysis of cores.

You can access this article if you purchase or spend a download.